
Faster Temporal Range Queries over Versioned Text

Jinru He
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY 11201
jhe@cis.poly.edu

Torsten Suel
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY 11201
suel@poly.edu

ABSTRACT
Versioned textual collections are collections that retain multi-
ple versions of a document as it evolves over time. Important
large-scale examples are Wikipedia and the web collection of
the Internet Archive. Search queries over such collections of-
ten use keywords as well as temporal constraints, most com-
monly a time range of interest. In this paper, we study how
to support such temporal range queries over versioned text.
Our goal is to process these queries faster than the corre-
sponding keyword-only queries, by exploiting the additional
constraint. A simple approach might partition the index into
different time ranges, and then access only the relevant parts.
However, specialized inverted index compression techniques
are crucial for large versioned collections, and a naive par-
titioning can negatively affect index compression and query
throughput. We show how to achieve high query through-
put by using smart index partitioning techniques that take
index compression into account. Experiments on over 85 mil-
lion versions of Wikipedia articles show that queries can be
executed in a few milliseconds on memory-based index struc-
tures, and only slightly more time on disk-based structures.
We also show how to efficiently support the recently proposed
stable top-k search primitive on top of our schemes.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval.

General Terms
Algorithms, Performance.

Keywords
Inverted index, query processing, temporal search, range queries,
versioned documents.

1. INTRODUCTION
The major web search engines now have hundreds of mil-

lions of users that issue several billion queries per day. Each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

query needs to be evaluated against the tens of billions of
pages covered by the engine, resulting in significant hard-
ware and energy costs. This situation has led to renewed
interest in basic query processing architectures and index or-
ganizations for large document collections, and a lot of recent
research has focused on topics such as index building, index
compression, fast index access and traversal, and caching and
early termination techniques for fast query processing.

Here, we focus on the special case of versioned document
collections. These are collections where each document con-
sists of multiple versions that represent the evolution of the
document over time, and the goal is to enable search across
the different versions of the documents. Maybe the best-
known example of a versioned document collection on the
web is Wikipedia, which retains all past versions of all ar-
ticles, and a lot of researchers have studied the evolution
of Wikipedia articles over time. Another important exam-
ple is the web collection at the Internet Archive, consisting
of more than 150 billion web pages that have been crawled
since 1996 – or more precisely, 150 billion distinct versions,
as many pages were repeatedly crawled over the years. Other
examples of versioned collections are revision control systems
for source code, document management systems, or versioned
file systems that retain all past versions of the files.

Such versioned document collections differ from standard
collections in several important ways. First, keeping all past
versions results in much larger collections than keeping only
the latest version. Second, different versions of the same doc-
ument are often very similar, but exploiting this redundancy
between versions to decrease inverted index size requires spe-
cialized index compression techniques. Third, the types of
information requests that users have are also different. In
particular, many queries have a temporal component, and
may ask for relevant documents during a certain time inter-
val. This is the main focus of this paper.

In particular, we are studying how to efficiently support
search requests with a temporal restriction (temporal range
queries) in versioned document collections. As discussed
later, a trivial way to implement such queries is via post filter-
ing, i.e., by traversing the index structures for the complete
time range and discarding results outside the query range.
Of course, one should hope to actually do much better, by
enabling efficient access to only those subsets of the index
structures that correspond to the query range.

However, techniques for enabling efficient access to time
ranges, usually by partitioning or suitably reordering the in-
dex, can result in significant increases in total index size un-
der state-of-the-art versioned index compression techniques,
which in turn can slow down processing in both memory-
based and disk-based system architectures. Thus, the main

challenge we address here is fast temporal range query pro-
cessing in versioned document collections under state-of-the-
art versioned index compression methods.

The remainder of this paper is organized as follows. We
first give some background and discuss related work. Then
Section 3 lists our main contributions. Section 4 discusses the
data sets we use and provides some baseline experimental
results. Sections 5 and 6 provide our main contributions,
smart partitioning and index reorganization techniques that
achieve improved performance for memory- and disk-based
indexes. Section 7 shows how to efficiently implement the
recently proposed Stable Top-k operator [22] on top of our
index. Finally, Section 8 provides some concluding remarks.

2. BACKGROUND AND RELATED WORK
We now provide some background and discuss related work.

We start with basics of inverted indexes, and then discuss
versioned document collections, versioned index compression,
and previous work on range queries.

2.1 Searching Document Collections
There is a vast literature on how to organize and query in-

dex structures for standard (i.e., non-versioned) textual doc-
ument collections. This includes work on compressing index
structures using specialized techniques, executing basic forms
of Boolean and ranked queries over such collections, and im-
plementing various early termination and tiering strategies
that allow ranked query processing without complete index
traversal. We refer to the survey of Zobel and Moffat [27] for
an overview.

Inverted Indexes: Most current search engines use an
inverted index structure to support efficient keyword queries
[27]. An inverted index for a collection of documents is a
structure that stores, for each term (word) occurring some-
where in the collection, information about all locations where
it occurs. For each term t, the index contains an inverted list

It consisting of a number of index postings. Each posting
in It contains information about the occurrences of t in one
particular document d, usually the ID of the document (the
docID), the number of occurrences of t in d (the frequency),
and possibly other information such as the locations of the
occurrences within the document. We assume an index with
docIDs and frequencies in this paper.

To a first approximation, ranked query processing in search
engines involves traversal of the inverted lists for the query
terms, and computation of a score for each document satis-
fying an initial Boolean filter, usually the AND or OR of the
query terms. For efficiency, this score should be computable
from the information stored in the inverted index, though
in practice often additional features are fetched for a second
round of scoring after winnowing of the initial set of can-
didates. Our techniques here do not depend on the precise
scoring function.

Index Compression: The postings in each list are usu-
ally sorted by docID and then compressed using any of the
techniques in the literature [27]. Most techniques first re-
place each docID (except the first) by the difference between
it and the preceding docID, called d-gap, and then encode the
d-gaps using a suitable integer compression method. The d-
gaps and frequencies are often stored separately, and thus we
compress sequences of d-gaps and sequences of frequencies.
Inverted lists are usually organized into blocks that can be
independently accessed, thus enabling forwards skips during
query processing. We use such blocked indexes in our imple-
mentations, with a block size of 128 integers.

A large number of inverted index compression techniques
have been proposed; see [27] for an overview. Here, we use
two techniques that have been previously applied to versioned
document collections [12, 13]: Interpolative Coding (IPC)
[17] and the OPT-PFD method [23] from the PForDelta fam-
ily of compression schemes [14, 28]. Both methods are espe-
cially suitable for compressing clustered (or bursty) sequences
of integers, where there are runs of small numbers separated
by a few larger numbers. IPC achieves the smallest com-
pressed size but is somewhat slow in decompression, while
OPT-PFD has a slightly larger compressed size but allows
extremely fast decompression (up to a billion integers per
second per core).

2.2 Versioned Document Collections
A versioned document collection D is a set of documents

d0, . . . dn−1, where each di has mi versions d1i , d
2
i , . . . , d

mi

i .
We assume a linear history, and do not try to model the case
of branches (forks) in the revision history, though we believe
most of our ideas could be adapted to this case. Each version
has a lifespan associated with it, i.e., a time period where it
is valid, and we assume that different versions of the same
document have disjoint lifespans.

For an overview of the issues involved in building large
scale web archival systems, see [21, 3]. There has been some
amount of recent work on indexing and searching of versioned
collections. Overall, this work can be split into three subsets,
corresponding to different layers of a search architecture for
such collections:

• Index compression techniques for versioned collections
that exploit the similarity between different versions of
a document [4, 15, 8, 25, 5, 12, 13], leading to signifi-
cantly smaller index sizes and faster index traversal.

• Support for efficient temporal range (or point) queries
over versioned collections through suitable index orga-
nization and index traversal [5, 2]. Here, the goal is
to process queries with temporal constraints (say, for
versions that were valid during a certain time interval)
faster than a complete traversal of the index followed
by subsequent filtering, by allowing efficient access to
those index postings that fall into the right time range.

• Implementation of higher-level temporal operators, such
as the Stable Top-k operator recently proposed in [22],
on top of the index. The idea is that users may be inter-
ested in, e.g., documents that were relevant throughout
the entire query time interval, or on average very rele-
vant. In general, there may be some aggregation across
different versions within the time interval to determine
the most suitable documents and versions to return.

We focus here on the middle layer, supporting fast temporal
range search. However, we also consider how this interacts
with the other two layers. In particular, we will see that a
naive approach for range search based on index partitioning
can severely affect compressed index size, resulting in sig-
nificant performance degradation. Thus, one main concern
here is on supporting range search while preserving the ef-
fectiveness of the lower-level compression methods. We note
that this challenge distinguishes the temporal range search
problem on versioned document collections from that on non-
versioned collections, such as news archives where each article
has a publication time or a period of time when it is consid-
ered relevant but there is no versioning. (For completeness
we also provide some limited experimental results for a non-
versioned collection of articles from the New York Times.)

We also consider how to implement higher-level operators
on our methods. Here, recent work in [22] proposed algo-
rithms and specialized index structures for one such opera-
tor, Stable Top-k. We show in Section 7 that we can in fact
implement this operator on top of our unchanged index or-
ganizations, with very little overhead, resulting in running
times that are faster than those reported in [22] for a spe-
cialized index structure on a smaller collection.

2.3 Versioned Index Compression
An inverted index for a versioned collection should allow

us to determine which versions of which documents contain
a term, and how often. Versioned document collections often
use index organizations and compression methods that are
somewhat different from those used for standard collections.
We now describe three inverted index compression schemes
that we use, Sorted, 2-DIFF, and 2R-MSA, which were shown
to achieve very fast query processing speeds in [12, 13].

The Sorted method is easy to explain: It simply indexes
the versions as if they were separate documents, but assigns
docIDs (or really version IDs) such that consecutive versions
of the same document receive consecutive IDs. Then either
IPC or OPT-PFD is used to compress the resulting inverted
lists. This idea of better index compression through proper
assignment of docIDs has recently been studied by a number
of researchers for the case of standard collections [7, 18, 20, 6,
19, 23], and is also related to the lossy compression approach
for versioned indexes proposed in [5].

To describe 2-DIFF and 2R-MSA, we need to introduce
two-level indexes, first proposed for standard collections in
[1], and then applied to versioned collections in [13, 12]. We
define the first-level index of a versioned document collection
D as an inverted index where the inverted list for a term t
contains a posting for document di if at least one version dji of
di contains t. For a term t that occurs in at least one version
of di, we define the bit vector of t and di as an array of mi

bits such that the j-th bit is set to 1 iff version dji contains
t. We also define a corresponding frequency vector that has
one integer entry for each 1-bit in the bit vector (that is,
each version dji containing the term); this entry contains the
frequency of the term in the corresponding version.

A two-level index structure for a versioned document col-
lection consists of the first-level index plus a second level
storing all the bit and frequency vectors in suitably com-
pressed form. This allows efficient query processing by first
running a query on the smaller first-level index, and then
fetching and decompressing any necessary bit and frequency
vectors. Note that the first level contains only docIDs, and
no frequency values. It is compressed using standard index
compression techniques such as IPC or PFD, since there is
no obvious structure in the data that distinguishes this case
from that of a non-versioned collection.

The 2-DIFF and 2R-MSA methods have the same first
level structure, as described above, but use different tech-
niques for compressing the vectors in the second level. This
is achieved by a transformation that creates virtual document
versions on which bit and frequency vectors are defined. For
convenience, we assume each document has an initial empty
version d0i .

Then in 2-DIFF, for each version dji we define a virtual

document version d′
j
i consisting of the symmetric difference

between dji and the previous version dj−1

i . (Note that in the
virtual version, some terms may have a negative frequency.)

In 2R-MSA, we create a virtual version d′
j,k
i for every 0 < j ≤

k ≤ mi, containing any terms that occur in all versions dji

to dki but not in dj−1

i or dk+1

i . (Note that versions are bags,
not sets, of terms.) We then keep all non-empty versions. In
the case of 2R-MSA, we also reorder (renumber) the virtual
versions in decreasing order of size.

Given these virtual versions, we create bit and frequency
vectors as defined earlier, and finally we compress these vec-
tors using either IPC or OPT-PFD. We note that 2-DIFF
and 2R-MSA are two-level versions of techniques originally
proposed in [4] and [15], respectively, with the additional re-
ordering of virtual versions by size in 2R-MSA leading to
better compression through clustering. The techniques we
present in this paper also apply to other versioned index com-
pression techniques (though the results may vary), and the
details of the virtual document definitions above are not re-
ally crucial for understanding later sections (as long as the
reader understands the concepts of levels, bit vectors, and
frequency vectors). Finally, note that we limit ourselves to
indexes storing docIDs and frequencies, and the problem of
compressing versioned indexes with positions is quite differ-
ent from the case without positions [25], as it requires work-
ing with substrings rather than bags of terms.

2.4 Temporal and Range Search
There is of course a lot of previous work on range search.

This includes extensive work by the database community
that is focused on numeric or string attributes but that does
not look at very large sets of documents and inverted index
structures. Work in IR includes support for numerical range
constraints [11] (e.g., keyword queries on product catalogs
with price or weight constraints), and techniques for geo-
graphic or local search [16, 26, 9, 10] (e.g., keyword queries
on business listings with location constraints). The main dif-
ference is the presence of versioning in our problem, making
the previous methods unsuitable.

We define temporal range search as the problem of return-
ing the docIDs, version numbers, and scores of all versions
satisfying the keyword as well as temporal range constraints.
A simple baseline solution to this problem would first per-
form a Boolean filter to identify documents satisfying the
keyword constraint, then check for the range constraint, and
finally fetch the frequencies and compute the scores. In fact,
we will implement this method in Section 4, and show that
with state-of-the-art index compression and traversal tech-
niques, such an approach is actually reasonably efficient for
the collection sizes typically studied in the literature. Note
that we do not consider early termination techniques; i.e., we
limit ourselves to techniques that must score any version that
satisfies the Boolean keyword and range constraints. This
means that our results are largely independent of the choice
of scoring function, as long as it can be computed from the
index data. (We use BM25 in our implementation. Clearly,
our methods can be extended to return top-k results, with
essentially the same running times.)

However, we should expect to do better than the baseline
by exploiting the temporal constraint, if we can organize the
index in a way that allows fast access to postings that satisfy
this constraint. This idea was evaluated in [5], leading to
improvements over the base case through index partitioning
along the time axis. However, their work used compression
methods that lead to much larger index structures, and thus
a slower baseline, than our work. We focus in particular
on the trade-offs between index organization and index size
for state-of-the-art index compression techniques. Another
recent study [2] attempts to accelerate range search by trad-
ing off speed and recall; the goal is to retrieve most of the

relevant results by selectively searching in only a subset of
the index partitions overlapping the query range. However,
the results suggest that significant gains in speed can only
be obtained with severe decreases in recall, and arguably the
same or better trade-offs could also be achieved with existing
standard early-termination techniques.

3. OUR CONTRIBUTIONS
In this paper, we describe and evaluate techniques for op-

timizing the performance of keyword queries with temporal
range constraints in versioned collections. In particular, we
make the following contributions:

• We evaluate a state-of-the-art implementation of simple
baseline methods for searching versioned document col-
lections, establishing the results that need to be beaten
by more optimized methods.

• We describe and evaluate document and index parti-
tioning techniques for main memory-based indexes that
achieve improved performance over the baseline with
only moderate increases in total index size.

• We also study how to organize index structures when
the index is partially or completely on disk.

• We show that our methods are fast enough to efficiently
support higher level operations, in particular the Stable
Top-k operator [22], without the need for specialized
index structures.

4. DATA SETS AND BASELINE METHODS
In this section, we perform a careful study of some baseline

methods on several data sets. We first introduce the three
document sets and the query traces that we used, then de-
scribe the baseline methods and their performance, and finish
with a discussion of our observations.

4.1 Data Sets and Query Traces
We use versioned collections from Wikipedia and the Inter-

net Archive, and a non-versioned collection with time stamps
from the New York Times.

The Wikipedia data (Wiki) consists of 2,401,789 docu-
ments with a total of 85,352,299 distinct versions, i.e., about
35 versions per document on average. (We removed versions
marked as minor edits.) This is a complete archive of English
language Wikipedia articles from January 2001 to January
2008 (more than 1.5 TB in uncompressed form), more than
2 times larger than the set used in [22, 5] and about 10 times
larger than that in [13, 12]. The Internet Archive data (IRE)
consists of 1,056,981 web pages with 16,680,002 distinct ver-
sions from the Irish web domain collected from 1996 to 2006,
i.e., about 15 versions per document. In our experiments,
we assume that each version here is valid from the time it is
fetched to the time a new, distinct version is crawled. The
New York Times data (NYT) consists of 1,831,109 news ar-
ticles from January 1987 to January 2007. Each article has
a time stamp indicating the publication date. We assumed
that every article had a lifetime of 90 days, as suggested in
[2].

We point out that particularly for the Wiki and IRE data
sets, versions are not equally distributed over time. In Figure
1 we show the total number of documents and terms (i.e., to-
tal postings) in the versions that were valid at certain points
in time. We see that both collections experienced significant
growth over the total time period, with more content towards
the end of the period.

Figure 1: The number of documents and number of

terms (i.e., total postings), based on all versions that were

valid on a fixed day each year. We show results for Wiki

(left) and Ireland (right).

Queries: For each of the three data sets, we compiled
query traces using the AOL search query log. For Wiki, we
extracted 10,000 queries where the user clicks on a result from
the Wikipedia.org domain (following [13]). We also extracted
5,000 and 10,000 queries, respectively, where users clicked on
results in the ie and nytimes.com web domains. Then we
assign temporal ranges to these queries by choosing start and
end times. The start time is chosen using two different ran-
dom distributions, (a) uniformly from the total time interval,
and (b) biased according to the document distribution shown
in Figure 1 so that more queries focus on those times where
most of the content resides. We then randomly select an end
point such that the expected size of the range is equal to 7
days, 30 days, or one year, to model different granularities
for the temporal constraint.

System Setup: All experiments were run on a single core
of an Intel Xeon E5520 processor running at 2.26 Ghz. Disk
costs were modeled assuming 8 ms access time for each sep-
arate access and 50 MB/s sequential transfer rate, which is
typical of current low-cost SATA disks.

4.2 Non-Temporal Baseline
We built compressed versioned index structures contain-

ing docID and frequency data for our three collections, using
existing components described in Section 2. For the non-
versioned NYT data set, only the Sorted method is appli-
cable; we assigned docIDs according to the time stamps of
the articles. We also built a fast query processor using ex-
isting components in our group. This processor uses various
state-of-the-art techniques such as block-compressed indexes
and fast document-at-a-time index traversal. It can execute
queries with and without temporal range constraints, and we
will later extend it with various improvements. In the fol-
lowing, we provide some benchmark results for our processor
that serve as a baseline for later sections.

Index Size: We start by reporting some results for index
size and query processing without additional temporal con-
straints. We first look at the first level of the indexes for
Wiki and IRE. In Table 1 we show the total size (in MB)
and query processing speed (in millisecs) for the first-level
index only, for Wiki and IRE and using IPC and OPT-PFD
compression. Queries are chosen from the relevant traces
but without range constraints, and we traverse the docID-
only postings in the first level to report all documents that
contain all query terms (intersection).

Wiki Ireland

IPC size (MB) 864 273
IPC speed (ms) 1.0 0.3
PFD size (MB) 1062 394
PFD speed (ms) 0.6 0.1

Table 1: Compressed sizes and query processing speeds

for the first-level index structure.
We see from Table 1 that both index sizes and query pro-

cessing speeds for the first level are quite small. We also see
that using IPC rather than OPT-PFD results in decreases
in first-level index size, but at the cost of disproportional
increases in time. Thus, in the remainder, we choose OPT-
PFD for both levels of our index structures. (Results in [13]
already suggest using OPT-PFD for the second level.)

Next, we look at total index size (in MB) for the three
collections under the different compression schemes, shown
in Table 2. We see that, as should be expected from [13],
2-DIFF and 2R-MSA achieve a significantly smaller com-
pressed index size than Sorted, with 2R-MSA doing slightly
better than 2-DIFF. In particular, for Wiki with 85 million
versions and more than 1.5 TB of uncompressed (though
highly redundant) data, we get a complete index size of only
about 4 GB, thus allowing the index to be kept completely
in main memory on many current machines.

docID freq total

Wiki Sorted 5508 8364 13872
Wiki 2-DIFF 3802 1109 4911
Wiki 2R-MSA 2963 1104 4067
IRE Sorted 1137 856 1993
IRE 2-DIFF 894 282 1176
IRE 2R-MSA 780 170 950
NYT Sorted 453 135 588

Table 2: Compressed index size in MB for docIDs and

frequencies using the three compression methods on our

data sets.
Non-Temporal Queries: Next, we report results for

query processing without temporal range constraints on the
full indexes, shown in Table 3. We report the CPU time of
query processing (on a single core) assuming the index is in
main memory, as well as the disk access and transfer times
involved if all inverted lists are located on disk and need to be
fetched first (we look at caching of index data further below).
For the disk numbers, we use disk access times of 8 ms and
a transfer rate of 50 MB/s, and we assume that the first and
second levels of each inverted list are next to each other so
they can be read with a single seek. (Thus, the access time
divided by 8 ms gives the average number of terms per query
for each trace, as every list requires a separate access.)

cpu disk access disk transfer total

Wiki Sorted 18.2 17.4 117 151.1
Wiki 2-DIFF 26.3 17.4 37.2 80.9
Wiki 2R-MSA 27.1 17.4 36.9 81.4
IRE Sorted 0.84 22.9 12.2 35.9
IRE 2-DIFF 1.31 22.9 6.2 30.4
IRE 2R-MSA 1.43 22.9 5.4 29.7
NYT Sorted 0.4 28.2 12.0 40.6

Table 3: CPU and disk cost per query (in ms) under

different compression schemes for our three data set.
As we see from Table 3, query processing in main memory

is quite fast, with Sorted achieving a time of 18.2 ms on the
large Wiki data set. However, Sorted results in much larger
index sizes, and this shows itself in the significant costs for
retrieving data from disk that make this the slowest method
in total cost. For the smaller IRE data set and for NYT,
the disk access cost is dominated by access times. But even
for Wiki under 2-DIFF and 2R-MSA, access costs are signif-
icant compared to transfer costs, implying that we have to
avoid optimizations that decrease data transfers at the cost
of additional random accesses.

4.3 Basic Temporal Query Processing
We now look at what happens once we add temporal con-

straints to the queries (while not changing the index organi-
zation). We create an additional (relatively small) memory-
based table that contains the time ranges of the different ver-

sions, allowing efficient lookup given an index posting. We
then have two ways to use this table to check the range con-
straint: We can either first perform the intersection between
query terms and then do a lookup for each qualifying version
(intersect-first), or we can do a lookup for every posting in
the shortest list and then do the intersection with the other
terms (check-first), which decreases the cost of the intersec-
tion at the cost of more lookups.

In Table 4, we show CPU costs on the three data sets
and different compression schemes, assuming a uniform query
distribution. In addition to check-first and intersect-first, we
also show a method called best-of-both that assumes that
each query uses the best approach, giving us an upper bound
on what can be achieved by choosing the best for each query.
We note that in some cases we see slight improvements over
the non-range case, since we do not have to fetch frequency
values and compute scores for versions that do not satisfy the
range constraint. On the other hand, the cost of doing the
simple lookup into the global table is also significant, in some
cases more than wiping out the savings. Overall, numbers are
similar to the non-range case.

check-first intersect-first best-of-both

Wiki Sorted 16.7 11.2 10.1
Wiki 2-DIFF 29.7 28.1 27.5
Wiki 2R-MSA 30.4 29.2 28.4
IRE Sorted 0.80 0.72 0.7
IRE 2-DIFF 1.32 1.13 1.08
IRE 2R-MSA 1.45 1.33 1.31
NYT Sorted 0.38 0.31 0.29

Table 4: CPU cost of query processing (in ms) under

uniform query distribution with range size 30 days.

bias uniform

2-DIFF 2R-MSA 2-DIFF 2R-MSA

One Week 19.5 20.1 14.8 15.1
30 days 19.9 20.7 15.1 15.4
One Year 22.9 25.8 17.7 21.3

Table 5: CPU costs of query processing with first-level

range check, under biased and uniform query distribution

for different range sizes.

There is one additional optimization that we can add for
two-level methods, without any changes in index organiza-
tion. As shown in Figure 1, many documents do not exist
yet at the beginning of the timeline, as they are only added
or crawled later. Thus, after traversing the first level of the
index, we could check the documents retrieved in this phase
to see if their total lifetime overlaps with the query interval,
thus eliminating some documents created only later without
fetching the second-level bit vector. However, this means
that running times depend more heavily on the query distri-
bution, and in particular on the choice of uniformly chosen
versus biased starting point. The uniform model would cre-
ate a lot of queries that are early in time and thus many
documents can be ruled out after the first phase, resulting in
faster query processing.

In Table 5 we show CPU costs with this optimization, for
queries with expected query range sizes of 7 days, 30 days,
and one year, under the uniform and biased query model.
We see that the optimization leads to significantly decreased
costs for the uniform model, compared to the previous tables.
Costs for the biased model are higher, as in every phases of
the computation more candidates survive the various range
tests. However, we feel that given the distribution shown in
Figure 1, the biased model is more appropriate, and thus we
choose this model in the following sections.

4.4 Impact of List Caching
So far, we have assumed that the index structure is either

completely in main memory, or only on disk. However, this
second case is not really realistic for current search systems,
which usually cache at least some of the inverted lists in main
memory even when the complete index does not fit. Caching
is known to provide significant performance boosts [24]. To
determine the impact of caching, we implemented a simple
caching scheme that selects a static subset of lists to be kept
in memory. Lists are selected based on their frequency in a
large query trace (disjoint from the actual queries used to
measure CPU costs), and based on their size, as small lists
are slightly more preferable due to the high cost of random
accesses on disk.

Figure 2: Disk costs in milliseconds per query for differ-

ent compression methods on the Wiki data set, as cache

size is varied between 0 and 1024 MB.

The result are in Figure 2, which shows that disk costs
decrease significantly with cache size. With cache size 1024
MB (about 20 to 25% of total index size), the disk cost for
2-DIFF and 2R-MSA has decreased to about 20% of the cost
without caching. Also, notice that the relative performance
gap of 2-DIFF and 2R-MSA versus Sorted increases as cache
size increases – better compression means a higher cache hit
rate since a higher percentage of the index fits in the cache,
and also less data to fetch when there is a miss. One more
observation, not shown due to space constraints, is that the
relative cost of disk access times (for seeking the start of an
inverted list on disk) increases compared to the transfer cost
as cache size increases.

4.5 Discussion
We now briefly discuss the main observations and lessons

from this section. First, we observed that using state-of-the-
art index compression and traversal techniques, even a base-
line query processor is quite efficient, achieving less than 30
ms per query for a memory-based index, and about 80 ms per
query for a disk-based index, on the 85 million versions of the
Wiki data set. Second, proper compression using two-level
techniques makes a significant difference in disk access costs
and total index size (the amount of memory we need to buy
for the in-memory case). Third, even a small cache in main
memory significantly decreases disk access costs. Fourth,
even for fairly large data sets, the costs for initiating disk
accesses are significant in comparison to the transfer time
for sequential reads, particularly with caching. This implies
that when we reorganize the index in the next sections to
get better performance, it is usually not a good idea to split
inverted lists into several pieces that require separate disk
reads. Finally, given the results here, we should not expect
further improvements by an order of magnitude or more –
in the case of a disk-based index, one would expect running
times to be lower bounded by h·t·a, where h is the cache miss

rate (1.0 if there is no caching), t is the average number of
terms in a query, and a is the access time (8 ms in our case),
assuming a separate seek is needed for any term resulting in
a cache miss.

In the next two sections, we will design improved index
organizations that decrease both CPU and disk costs. We use
the biased query model, and we limit ourselves to the 2-DIFF
and 2R-MSA methods as they are much more promising than
Sorted.

5. CUTTING DOCUMENTS AND COSTS
We now study how to further decrease the CPU costs of

range queries, by suitably splitting documents. Recall that in
the previous section, we introduced a first level range check
that rules out documents whose lifetime does not intersect
the query range. However, the benefits are limited by the
properties of the data set. Now suppose we split a document
with v versions into two subdocuments, one consisting of the
first v/2 versions, and the other consisting of the rest. This
will increase the size of the first-level index, and the time
spent in the first level, as we now have more documents and
more postings. It will also increase the size of the second-level
index, as we get more, but shorter, bit and frequency vectors
that are overall less compressible than the longer vectors we
had before (since, in a nutshell, we lose the redundancy be-
tween consecutive versions that are separated by subdocu-
ment boundaries). However, on the plus side, the first level
range checks in our query processor will filter out many more
subdocuments that do not overlap the query range.

Thus, we can trade off index size for increased speed, and
the question is how to best perform these cuts. One approach
is to pick a number of versions s, and greedily partition each
document into subdocuments with (at most) b versions each;
we call this approach fix-bits. However, this means that doc-
uments with many versions get split into a large number of
subdocuments that each cover only a short period of time,
while documents with only a few versions are not cut at all.
Decreasing b will exacerbate the first problem, and increasing
the latter. Or we can partition by time, and greedily add ver-
sions to a subdocument until its lifetime exceeds some fixed
amount of time t; we call this fix-time. However, this can
result in very small subdocuments with only one or two ver-
sions for documents with few versions overall, significantly
increasing overall index size unless t is chosen quite large.
We note that fix-time is similar to the time-based index par-
titioning scheme in [5]; however, we partition each document
independently without ever duplicating a version in two par-
titions. We discuss their method in more detail later.

Finally, we consider a third method that combines these
two in an elegant way. If we make the simplifying assumption
that query ranges are uniformly chosen (not biased, as we
actually use), then the likelihood of a subdocument passing
the first level check is roughly proportional to its lifetime.1

If we assume that the cost of accessing a bit vector in the
second level is proportional to its length (number of bits),
then the expected cost for the bit vectors of a subdocument,
given a query, is proportional to the product of its length
in bits and its lifetime. To minimize this, we should chop
whenever this product exceeds some threshold p, where the
choice of p will determine the blowup in index size. This
method avoids the problems of the other schemes discussed
above, in that it chops documents with many versions into

1Strictly speaking, this depends on both lifetime and query
range size.

bigger pieces (but not too big) and documents with fewer
versions into smaller pieces (but not too small). We call this
smart partitioning.

Integrating this into our query processor is easy. We just
need to determine the best settings for the parameters b,
t, and p in the above methods. In Figure 3 we show the
resulting trade-off between total compressed index size and
the CPU cost for 30-day range queries, for 2-DIFF and 2R-
MSA compression. Figure 4 shows the same for the IRE
data. We note that the smart partitioning obtains the best
trade-off in all cases, with the advantage over the other two
methods more pronounced (but absolute improvements more
limited) on the IRE data set. We also see that when we make
too many partitions, both CPU cost and size increase. For
2-DIFF on Wiki, we see that increasing the index size from
4.9 GB (no chopping) to 5.3 GB already brings down CPU
cost from more than 20 to less than 7 ms per query, a very
significant improvement.

Figure 3: CPU cost per 30-day query under three differ-

ent document partitioning schemes (in ms) on the y-axis

versus total index size (in GB) on the x-axis, on the Wiki

data set, for 2-DIFF (left) and 2R-MSA (right).

Figure 4: Same as previous figure, on the IRE data set.
We select the parameter p for the smart partitioning that

minimizes query processing time. In Table 6, we show the
resulting total index sizes and disk costs, plus CPU costs
for query ranges of 7 days, 30 days, and one year. We note
here that the disk cost is without any caching, that it is
independent of query range size as we always fetch the entire
inverted list from disk, and that there is a slight increase in
disk cost. Overall, we get significant improvements in total
cost over Table 5 when the index is in memory, and moderate
improvements when it is on disk.

Wikipedia Ireland

2-DIFF 2R-MSA 2-DIFF 2R-MSA

One Week 6.5 7.3 0.61 0.64
30 days 6.6 7.4 0.62 0.66
One Year 13.8 14.9 0.82 0.85
index size 5532 4727 1418 1024
disk cost 59.1 55.9 29.2 28.9

Table 6: Total index size, disk cost, and CPU cost for

various query sizes, under the smart partitioning that

minimizes CPU cost.

6. OPTIMIZING DISK ACCESS
In the previous section, we studied methods that decrease

the CPU cost of queries through document partitioning. How-

ever, the methods do not decrease disk costs, as we still have
to fetch the entire inverted list for a query term; in fact,
disk cost increased slightly with total index size. In this sec-
tion, we present methods that optimize disk costs in the case
where the index does not fit into main memory. To do so, we
need to find ways to partition documents and organize the
resulting postings, such that all index postings that intersect
with a query range are located in one part of the inverted
list; this way, when a list is not in memory, we only need to
fetch that part (reducing transfer but not seek time).

6.1 Index Organization Methods
We now describe the different methods that we considered,

including the one proposed in [5] and several new ones.
Interval partitioning: This is a version of the technique

in [5], which uses a partitioning of the timeline into intervals.
For example, for a period of 10 years, we might create 10
partitions, one for each year. We then take the documents
and cut them into subdocuments that each fit into one of the
partitions. Of course, there will be versions whose lifespan is
split between two or more intervals; these will be replicated in
each partition, with its lifespan pruned to the interval bound-
aries. We then assign document IDs to subdocuments such
that consecutive docIDs are used within a partition; this or-
ganizes each inverted list into partitions that can be accessed
separately. It is important to keep each list together in one
place on disk – a method that builds independent inverted
indexes for each partition would result in much higher disk
access costs when queries overlap more than one interval.

Our implementation of this method uses two-level com-
pression and the various other optimizations in our query
processor, and thus we would expect faster results than in
[5]. However, the method suffers from the same drawbacks
as the fix-time method in the previous section in that it uses
a one-size-fits-all approach for all documents. In addition,
the replication of some versions in several intervals will fur-
ther increase index size. On the plus side, given a query
we can fetch all necessary parts of the inverted list in one
disk access, by fetching only those partitions of the list with
intervals overlapping the query range.

Stencil-Based Methods: To overcome the drawbacks of
the fix-time and interval partitioning methods, we considered
using a multi-level hierarchical partitioning of the timeline.
Here, level L0 contains the entire timeline, and we obtain
level Li+1 from Li by partitioning each interval in Li into
b subintervals, for some b. Figure 5 shows an example of a
4-level partitioning with b = 2 and a timeline of 32 days. We
call such a partitioning a stencil; given this we now partition
our documents so that each resulting subdocument resides in
an interval that fits its range.

We look at two partitioning methods that use the smart

approach from the previous section. The first one, partition-
first, just uses the smart partitioning to make subdocuments,
and then puts each subdocument into the deepest interval in
the multi-level partitioning that it fits in. (Thus, we first cut,
and then throw into the intervals, with no replication.)

In the second approach, stencil-first, we recursively cut
documents into subdocuments using the stencil, as follows:
Given our current subdocument, we find the deepest interval
that it fits in, probably L0 in the beginning. We then check
if the product of lifespan and number of versions is less than
p, where p is the parameter for the smart method. If yes,
we do not cut it further, and keep it in the current interval.
If no, then we cut it into subdocuments that exactly fit into
the children of the current interval, and continue. In this

case, we need to replicate versions that cross boundaries, as
in the single-level case, and we get a more snug fit than in
the partition-first case. (Also note that we keep cutting until
the product is less than p, while in smart we cut as soon as
it becomes larger than p; in both cases the idea is to get a
cut with product close to p, but now we may have to use a
slightly larger p.)

Figure 5: A 4-level stencil with b = 2 for a timeline of 32

days. The four shaded partitions need to be fetched for

a query with range [9, 11].

Finally, we lay out each inverted list such that the parti-
tions are ordered by an in-order traversal of the multi-level
structure. We note that this places the partition correspond-
ing to L0 in the center, and this partition has to be fetched
for any incoming query. Figure 5 shows the four partitions
that are fetched for a query with range [9, 11].

Sort-Based Approaches: The next approaches are based
on the idea of ordering subdocuments in the lists by assigning
docIDs temporally. This is easy to do when each document
has a single timestamp or a fixed lifespan t, as in the case
of the NYT collection where every article was assumed to be
valid for 90 days. If we then assign docIDs by start time,
then for a range query [l, r], we only need to fetch and tra-
verse postings for documents with start times between l − t
and r, which are located in one consecutive area of the list.
However, in our Wiki and IRE data sets, each version has a
different lifespan, and of course we cannot afford to store each
version by itself, as this would result in a much larger index
size. Thus, our goal now is to again partition the documents
into subdocuments, such that we can apply the above idea
to decrease the amount of list data that we need to retrieve
from disk. We look at three policies:

Time-sort is similar to fix-time in the previous section.
Given a choice of t, we greedily cut into subdocuments with
lifespan at most t. If a single version has lifespan larger than
t, then we cut and replicate this version. After assigning
docIDs based on the start time of each subdocument, given
a range query [l, r] we only have to fetch postings with start
times between l − t and r.

Smart-sort is based on the smart partitioning method
from the previous section, that is, we greedily cut whenever
the product of lifespan and number of versions in the subdoc-
ument becomes larger than some bound p. Then we assign
docIDs in the same way as in time-sort. A problem with this
is that there is no absolute upper bound t on lifespan, thus
making it impossible to translate an incoming range query
into a small subset of postings, and this means that usually
the entire inverted list will be fetched. We can improve CPU
cost by storing for each block of 128 docIDs in the first level
of the index the maximum end time of any document in the
block. This allows skipping of many such blocks.

Hybrid-sort partitions documents greedily as soon as ei-
ther of the conditions in time-sort and smart-sort becomes
true. Here the idea is to choose t and p such that usually the
smart condition will make the cut, with the constraint based
on t being triggered as a fuse when the lifespan of a sub-

document becomes too large. Thus, we hope to preserve the
advantages of smart partitioning while also keeping an abso-
lute upper bound on document lifespan that can be used to
fetch only relevant parts of a list from disk.

6.2 Experimental Evaluation
We now evaluate the index size, CPU cost, and disk cost

of the six methods, interval, partition-first, stencil-first, time-
sort, smart-sort, and hybrid-sort. We use the 2-DIFF com-
pression method, though results for 2R-MSA are similar.

Wikipedia Ireland

cpu disk total cpu disk total

stencil-first 11.4 41.6 53 0.75 27.9 28.7
part.-first 5.6 38.6 44.2 0.56 24.6 25.2
interval 5.9 34.5 40.4 0.57 25.4 26

smart-sort 4.6 61.6 66.4 0.55 32.1 32.7
time-sort 5.8 31.9 37.7 0.51 24.6 25.1
hybrid-sort 4.3 30.3 34.6 0.47 24.5 25

Table 7: CPU costs and disk costs (in ms) for the various

methods with best parameter settings, for 30-day queries

and 2-DIFF compression.

Wikipedia Ireland

docIDs freq total docIDs freq total

stencil-first 4347 1649 5996 1055 557 1612
part.-first 5677 1365 7042 1552 405 1957
interval 6771 2312 9083 1717 524 2241

smart-sort 4890 1319 6209 1017 413 1430
time-sort 5365 1766 7131 1234 518 1752
hybrid-sort 5300 1738 7038 1224 515 1739

Table 8: Index size (in MB) for the various methods on

Wiki and IRE data, using 2-DIFF compression.

Overview of Results: We start with the CPU cost,
disk cost (without caching), and total cost per 30-day query,
shown in Table 7. The numbers given are for the best choices
of various parameters; we investigate some of these choices
later. We observe that all methods except smart-sort achieve
significant reductions in disk costs versus the earlier sec-
tions. The best results are obtained by time-sort and hybrid-
sort, followed by interval, and then the multi-level methods
partition-first and stencil-first. The interval method suffers
from a fair amount of version replication that increases total
index size (as shown later). The multi-level methods are lim-
ited by the need to fetch the postings located in higher-up
intervals in the structure, in particular the root L0 that is in
the middle of the inverted list.

Note that we use a single disk access to fetch all needed
partitions of an inverted list; this is the best for our data
sets. To do so, we interleave the two index levels. This is
simple for stencil and interval, which assign subdocuments
to discrete subsets: We just concatenate the first and second
level of each subset. For the sort-based methods, we have a
slightly more complicated structure. Consider time-sort with
parameter t: We store inverted lists in blocks of 128 integers,
and interleave blocks from both levels by ordering them by
minimum start time. We group the resulting sequence of
blocks into chunks of x blocks, and create a table storing
for each chunk the minimum start and maximum start of
any subdocuments in it. For range query [l,r], we fetch in
one access all chunks with minimum start larger than r and
maximum start larger than l−t (including any non-qualifying
chunks in-between). We define z as the maximum number of
first-level blocks between any consecutive second-level blocks.
We choose x >= z. In all our data we observe z <= 25, and
we set x = 40 in our experiments. Thus, each chunk has
at least one first-level and one second-level block. For large
z, replicating selected first-level blocks leads to even better
results.

It is possible, however, that using more than one disk ac-
cess in the multi-level methods would result in better perfor-
mance for even larger index sizes (due to either a larger doc-
ument collection or inferior index compression techniques).

Wikipedia Ireland

7 30 365 7 30 365

stencil-first 41.4 41.6 43.6 27.8 27.9 28.2
part.-first 38.3 38.6 42.9 24.4 24.6 25
interval 33.9 34.5 39.5 25.3 25.4 25.7

smart-sort 61.6 61.6 61.6 32.1 32.1 32.1
time-sort 30.6 31.9 36.6 24.6 24.6 25.1

hybrid-sort 29.6 30.3 35.1 24.5 24.5 24.9

Table 9: Disk cost per query for 7-day, 30-day, and one-

year queries, on Wiki and IRE with 2-DIFF compression.
Wikipedia Ireland

7 30 365 7 30 365

stencil-first 10.8 11.4 16.3 0.74 0.75 0.91
part.-first 5.1 5.6 11.1 0.54 0.56 0.81
interval 5.4 5.9 13.7 0.52 0.57 0.84

smart-sort 4.3 4.6 8.9 0.53 0.55 0.86
time-sort 5.2 5.8 11.9 0.49 0.51 0.85

hybrid-sort 3.9 4.3 10.6 0.46 0.47 0.82

Table 10: CPU cost per query for 7-day, 30-day, and one-

year queries, on Wiki and IRE with 2-DIFF compression.

Looking at CPU costs in Table 7, we note that most of the
techniques also outperform the results in previous sections.
In particular, the methods using smart partitioning (smart-
sort and hybrid-sort) do extremely well, probably due to a
more clustered access pattern into the index during query
processing resulting in fewer blocks of OPT-PFD-compressed
data to be uncompressed on both index levels.

Next, we look at compressed index size for the various
methods, shown in Table 8. We see that interval has the
largest index size on both data sets, while stencil-first has
the smallest on Wiki (but high CPU and disk costs). All the
sort-based methods also perform well. Overall, the results
of the two tables suggest that hybrid-sort is the best overall
performer, followed by time-sort. However, smart-sort is a
good choice when the index is completely in main memory,
having lower CPU cost than the smart partitioning in Section
5 with slightly larger index size.

Now we look at how disk costs vary as range query size
changes from 7 days to 30 days to 365 days, shown in Table
9. Note that the index structures were optimized for the case
of 30 days. As such, we cannot expect queries to become
much faster for smaller query ranges. On the other hand,
cost increases only moderately for one-year queries. Also,
note that for IRE, costs are almost independent of range
size as disk costs are dominated by random access times.
Corresponding results for CPU cost are shown in Table 10.

Choosing Parameters: Next, we investigate some of the
parameter choices we made in the above tables in more detail.
For the stencil-based methods, we had to choose the base b
and depth d of the multi-level partitioning. We tried various
values of b and the simple case of b = 2 did overall quite
well. In Figure 6 we show the performance of the stencil-first
and partition-first methods as we vary the depth d; results
suggest choosing 4 or 5 levels for the larger Wiki set and 3
levels for IRE. In Figure 7 we see the total cost as we change
the parameter t (the maximum lifespan of a subdocument)
used in three methods. We note that t should ideally be
chosen somewhat larger than the query size (30 days in this
case). For IRE, it can be chosen much larger, but note that
the overall timeline in IRE is more than ten years, with fewer
versions per document than Wiki.

Impact of Caching: Recall that in real systems, even
if the index does not fit in main memory, some significant

Figure 6: Total cost (in ms) per query for partition-

first and stencil-first on the y-axis, as we vary the depth

of the partitioning on the x-axis, for 30-day queries for

Wiki (left) and IRE (right).

amount of memory is available for list caching, and we saw
in Section 4 that this significantly reduces disk costs. In Fig-
ure 8, we compare the complete cost per query (CPU cost
plus disk cost) of all the algorithms in this section on differ-
ent cache sizes. We see that, as expected, all methods obtain
significant benefits from caching. Overall, hybrid-sort per-
forms best, followed by time-sort and interval. Note that for
a cache size of 1024 MB, realistic on most current machines,
hybrid-sort is more than three times as fast as the baseline
2-DIFF method from Section 4.

Figure 7: Total cost (in ms) per query for interval, time-

sort, and hybrid-sort on the y-axis, as we vary the max-

imum lifespan (in days) of a subdocument on the x-axis,

for Wiki (left) and IRE (right).

Figure 8: Total cost (CPU plus disk, in ms) per query

on the y-axis, for cache sizes ranging from 0 to 1024 MB

on the x-axis.

7. AGGREGATE QUERY PROCESSING
Recent work in [22] proposed a new aggregate operator for

versioned document collections called Stable Top-k. Given a
keyword query, a query range, and a value x, this operator
returns all documents that were in the top-k results during
at least x% of the query range. In other words, were are
looking for documents that were among the most relevant
during most of the query range. This is an example of an
operator that performs an aggregate computation over sev-
eral versions that were valid during the query interval; other
examples might be documents that are ranked high on av-

erage, or documents that scored above a certain threshold
score most or all of the time.

U et al. [22] proposed several algorithms for this prob-
lem, with the fastest one using an specialized index structure
based on R∗-trees. In order to explore the efficiency of our
range search methods, we decided to implement Stable Top-k
on top of our generic mechanism. That is, we use our meth-
ods to find all versions that satisfy the keyword and range
constraints, and then run a separate (but fairly simple) Stable
Top-k algorithm on this result set, which typically consists
of a few thousand or few ten thousand versions.

In particular, we implemented a version of the Top-k Bands
algorithm in [22], and ran it for different query ranges on
Wiki. The results are in Table 11, where we show the addi-
tional cost (in ms) for Top-k Bands. We see that this cost
is in fact rather small. As it is independent of the method
used in the range search, we can get the complete cost by
adding the best numbers from this paper. Thus, if the in-
dex is completely in main memory, we need to add 4.3 ms
for 30-day queries (Table 10), and if it is completely on disk,
we need to add 34.4 ms (Table 7). Overall, these results
seem to outperform those for the specialized methods in [22],
on a data set that is significantly larger. We conclude that
generic range search methods can indeed efficiently support
aggregate operators such as Stable Top-k.

stable top-10 stable top-100

7 days 0.6 0.7
30 days 1.3 1.5
1 year 9.5 10.8

Table 11: Additional cost (in ms) of running Top-k Bands

on top of our range search, for different query sizes and

for k = 10 and k = 100.

8. CONCLUDING REMARKS
In this paper, we have described and evaluated techniques

for efficient temporal range queries in versioned document
collections. We evaluated some simple methods to provide
a realistic baseline for improvements, and then showed how
to decrease CPU and disk costs through suitable index or-
ganizations. Finally, we showed that our techniques are fast
enough to efficiently support classes of aggregate queries over
such collections.

There are several interesting problems that are left open
by us. One is about partitioning methods that attempt to
minimize index size by maximizing similarity within subdoc-
uments. When cutting a document, we essentially waste the
similarity between the two versions separated by the cut.
This suggests that we should try to cut whenever a document
undergoes significant change. However, this needs to be bal-
anced with the other concerns, the number of versions and
the lifespan of the resulting subdocuments, and preliminary
experiments by us did not give any nontrivial benefits. A
more careful partitioning method based on a suitable model
might give some improvements.

While we focused here on versioned collections, we be-
lieve that improvements in practice are also possible for non-
versioned collections where each document has a timestamp
or lifespan associated with it. Finally, we did not consider
early-termination techniques for versioned collections, which
could compute top-k results without scoring all versions sat-
isfying the keyword and range constraints.

Acknowledgments
This research was supported by NSF Grant IIS-0803605, “Ef-
ficient and Effective Search Services over Archival Webs”, and
by a grant from Google. We also thank the Internet Archive
for providing access to the Ireland data set.

9. REFERENCES
[1] I. Altingovde, E. Demir, F. Can, and O. Ulusoy. Incremental

cluster-based retrieval using compressed cluster-skipping
inverted files. ACM Trans. on Information Systems, 26(3),
June 2008.

[2] A. Anand, S. Bedathur, K. Berberich, and R. Schenkel. Efficient
temporal keyword queries over versioned text. In Proc. of ACM
CIKM Conf., 2010.

[3] A. Anand, S. Bedathur, K. Berberich, R. Schenkel, and
C. Tryfonopoulos. EverLast: a distributed architecture for
preserving the web. In Proc. of ACM/IEEE JCDL Conf., 2009

[4] P. G. Anick and R. A. Flynn. Versioning a full-text information
retrieval system. In Proc. of ACM SIGIR Conf., 1992.

[5] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum. A
time machine for text search. In Proc. of ACM SIGIR Conf.,
2007.

[6] R. Blanco and A. Barreiro. Document identifier reassignment
through dimensionality reduction. In Proc. of European Conf.
on Information Retrieval, 2005.

[7] D. Blandford and G. Blelloch. Index compression through
document reordering. In Proc. of DCC Conf.,2002.

[8] A. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel,
J. McPherson, R. Qi, and E. Shekita. Indexing shared content in
information retrieval systems. In Proc. of EDBT Conf., 2006.

[9] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In Proc. of ACM
SIGMOD Conf., 2006.

[10] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. In Proc. of Conf. on
Very Large Data Bases, 2009.

[11] M. Fontoura, R. Lempel, R. Qi, and J. Zien. Inverted index
support for numeric search. In Internet Mathematics,3(2),
153-185, 2006.

[12] J. He, H. Yan, and T. Suel. Compact full-text indexing of
versioned document collections. In Proc. of ACM CIKM Conf.,
2009.

[13] J. He, J. Zeng, and T. Suel. Improved index compression
techniques for versioned document collections. In Proc. of ACM
CIKM Conf., 2010.

[14] S. Heman. Super-scalar database compression between RAM
and CPU-cache. MS Thesis, Centrum voor Wiskunde en
Informatica, Amsterdam, July 2005.

[15] M. Herscovici, R. Lempel, and S. Yogev. Efficient indexing of
versioned document sequences. In Proc. of European Conf. on
Information Retrieval, 2007.

[16] C. B. Jones, A. I. Abdelmoty, D. Finch, and G. Fu. The spirit
spatial search engine: Architecture, ontologies and spatial
indexing. In Proc. of Conf. on Geographic Information
Science, 2004.

[17] A. Moffat and L. Stuiver. Binary interpolative coding for
effective index compression. Information Retrieval, 3:25–47,
2000.

[18] W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted file
compression through document identifier reassignment. Inf.
Processing and Management, 39(1):117–131, 2003.

[19] F. Silvestri. Sorting out the document identifier assignment
problem. In Proc. of European Conf. on Information Retrieval,
2007.

[20] F. Silvestri, S. Orlando, and R. Perego. Assigning identifiers to
documents to enhance the clustering property of fulltext
indexes. In Proc. of ACM SIGIR Conf., 2004.

[21] S. Song, J. Jaja. Archiving Temporal Web Information:
Organization of Web Contents for Fast Access and Compact
Storage. In Technical Report UMIACS-TR-2008-08.

[22] L. U, N. Mamoulis, K. Berberich, and S. Bedathur. Durable
top-k search in document archives. In Proc. of ACM SIGMOD
Conf., 2010.

[23] H. Yan, S. Ding, and T. Suel. Inverted index compression and
query processing with optimized document ordering. In Proc. of
WWW Conf., 2009.

[24] J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In Proc. of WWW
Conf., 2008.

[25] J. Zhang and T. Suel. Efficient search in large textual collection
with redundancy. In Proc. of WWW Conf., 2007.

[26] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid
index structures for location-based web search. In Proc. of ACM
CIKM Conf., 2005.

[27] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2), 2006.

[28] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In Proc. of ICDE Conf., 2006.

